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Abstract The reaction path is an important concept of the-
oretical chemistry. We analyze different forms of reaction
pathways in the light of the abstract theory of calculus of
variations such as steepest descent from saddle point, the
intrinsic reaction coordinate (IRC), Newton trajectory, vari-
ationally optimized reaction paths and others. The paper is
both a mathematical review and a pointer to future research.
Besides the theoretical definitions, we shortly discuss hints
at the numerical effect of the definitions.

Keywords Potential energy surface · Variation of reaction
pathways · Euler equations · Steepest descent ·
Newton trajectory

1 Introduction

The concept of the minimum energy path (MEP) is the sta-
tic model of a reaction path (RP) of an adiabatic potential
energy surface (PES). It is the usual approach to the theoreti-
cal kinetics of larger chemical systems [1–5], see also [6–10].
It is roughly defined as a line in the coordinate space, which
connects two minimizers by passing the saddle point (SP), the
transition structure (TS) or a “mountain pass” of an adiabatic
PES following the valley. It is also able to describe pathways
of conformational rearrangements. The energy of the SP is
assumed to be the highest value tracing along the RP. It is
the minimal energy a reaction needs to take place. Reaction
theories are based either implicitly (transition state theory
[1]) or explicitly (variational transition state theory [5,6]) on
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the knowledge of the RP. These theories require only local
information about the PES along the RP. They circumvent the
dimension problem: it is impossible to fully calculate the PES
which remains to be a terra incognita. The SP and the mini-
mums form stationary points of the PES. Roughly speaking,
it is only of secondary interest, how a reaction path ascends
to the SP. This looseness makes a variety of RP definitions
possible.

The fundamental problem in handling an n-dimensional
hypersurface is the dimension. Molecules with more than
N = 4 atoms would cause an overwhelming number of net
points for the PES. The RP concept is a promising way out
because it reduces the problem of finding an algorithm for
one-dimensional curves, without any knowledge of the whole
PES. A parameterization t of the RP x(t) = (x1(t), . . . ,
xn(t))T is called reaction coordinate. Any algorithm which
allows to determine this pathway in a suitable approximation
should be tested. The search for valley pathways especially
is an important part of the PES analysis; up to date it still
offers no satisfying concept for all aspects of the problem.

Nowadays, the use of variational treatments reaches a ren-
ovation [11–15]. In this paper, we will explore the different
definitions by the calculus of variations [16], like

• IRC, or steepest descent (SD) from SP [11–15,17,18],
• distinguished or driven coordinate method [19,20], or in

modern form Newton trajectories (NT) [8,9,21–23],
• the variational path method [24–27],
• gradient extremal (GE) [28–33].

The definitions lead to different curves which may well reflect
different aspects of the idea of a static MEP. These differences
are the reason for treating other methods than SD once for
all. (So, the search for an appropriate MEP is not equivalent
to the finding of the SD pathway from the SP [7,34–36].)
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The curve which follows a driven coordinate, or the NT can
also be used in certain cases for the minimum path [8,9]. The
GE [4,28–33] appeared to represent a suitable ansatz for a
minimum path, however, with its many additional solution
curves and turning points [32,37,38] this concept in its gen-
eral form is not suited to be used as a routine program for the
calculation of such paths.

The valley structure may be of interest by itself as it is the
case in spectroscopy or for the selective choice of a reactive
channel in chemistry. There, it is assumed that a molecu-
lar vibration takes place along the valley of the PES, and if
such a vibration is further excited, it may lead to a chemical
reaction. All the detailed activities for a simple calculation
of RPs are prerequisites for a number of dynamical theories
to come into operation, including the famous reaction path
Hamiltonian [2]. Further, the methods of direct dynamics
[5,6,39,40] need an exact and physical sensible description
of the reaction path [41]. This way, the MEP is the leading
line characterizing the reaction channel in which the reaction
trajectories should move.

The mathematical simplest RP definition is the steep-
est descent from an SP, resulting in the well-known intrin-
sic reaction coordinate (IRC) of Fukui [7,34–36,42,43]. Its
usual use is in mass-weighted Cartesians, cf. [7]. This path-
way is defined by an autonomous system of differential equa-
tions for a tangent vector along the curve searched for. Its
solution is unique. Therefore, no bifurcation can occur before
reaching the next stationary point. Hence, no branching of
PES valleys will be truly described by following the IRC,
see the discussion in [44,45]. The unique character will also
emerge in a variational approach [11], which we will explain
again in Sect. 4.

An NT is a curve where the selected gradient direction
comes out equally at every curve point. There are curves,
which pass all stationary points in most cases. Thus, NTs are
an interesting procedure to determine by way of trial all types
of stationary points [8], as well as some kinds of valley-ridge
inflection points [9,10]. Pieces of NTs can also be defined by
a variational integral. This is developed in this paper for the
first time, to our best knowledge. However, a whole family
of NTs connects minimum and TS of index one. Thus, there
is no unique NT between a minimum and a TS.

Gradient extremals (GE) form another approach for RP
following [4,28–33,37,38]. They are more complicated than
the IRC, but better fitted to solve the valley branching prob-
lem by the determination of a GE bifurcation [33]. How-
ever, other problems arise due to the occurrence of pairs
of turning points (TP) instead of a branching point (BP) of
the curve. Such turning points may interrupt the pathway
between minimum and SP. The GE curves often show some
kind of avoided crossing [4,30,31,44,45]. In the light of the
variational ansatz, GEs do not fit to this idea, in contrast to
their name.

The paper is organized as follows. Section 2 repeats
fundamentals of the theory of variations. That will be applied
to the IRC and other RP definitions in Sect. 3. Section 4 dis-
cusses conjugate points and the exceptional role of the IRC
in this respect. In Sect. 5 we apply transformations of the
curve parameter. We finally add a conclusion.

2 Variational methods [16]

2.1 The variational integral

Before we give the go-ahead, some basics. Let be F(x1, . . . ,

xn, z1, . . . , zn) a function with continuous first and second
partial derivatives with respect to all its arguments. We search
an extremum of a functional of the form

I (a, b) =
b∫

a

F(x1(t), . . . , xn(t), x ′
1(t), . . . , x ′

n(t))dt (1)

which depends on n continuously differentiable functions
x(t) = (x1(t), . . . , xn(t))T being the components of an RP,
x(t), in an n-dimensional configuration space. We regard
all vectors as column vectors. The prime is derivation to
t . Note that I is a one-dimensional integral. The bound-
ary conditions of the RP are (x1(a), . . . , xn(a))T = A, and
(x1(b), . . . , xn(b))T = B. These are usually the coordinates
of minimum and transition state, or of two adjacent mini-
mums, and t ∈ [a, b] is the curve parameter. With A and B
given, the task is named the simple fixed endpoint problem
in the calculus of variations.

2.2 Necessary condition for extremals

The necessary condition for a curve xi = xi (t), i = 1, . . . , n,
to be an extremal of the functional (1) is the system of Euler
equations where we use subscripts to denote differentiation

Fxi − d

dt
Fx ′

i
= 0, i = 1, . . . , n. (2)

The integral curves of Euler equations are called extremals
in mathematics in the field of variational calculus.

Example 1 The arc-length functional is

L(a, b) =
b∫

a

√
x′(t)Tx′(t) dt, (3)

with F(xk, x ′
k) =

√∑n
k=1 x ′

k
2, which does not explicitely

depend from the xk . Thus, with

l(x′(t)) =
√

x′(t)Tx′(t) =
√√√√ n∑

k=1

x ′
k(t)

2 (4)
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the Euler equations (2) become

d

dt
lx ′

i
= 0, (5)

and it follows lx ′
i
= Ci , where Ci is a constant. Thus we have

x ′
i√

x′Tx′ = Ci , (6)

but not all Ci are independent; it is

(x ′
i )

2 = C2
i

n∑
k=1

(x ′
k)

2, i = 1, . . . , n. (7)

Summation over i leads to the condition
∑n

i=1 C2
i = 1. We

get the general solution of the arc-length extremal

xi (t) = αi t + βi and Ci = αi/

√∑
k
α2

k . (8)

2.3 A nonlocal variational integral

The development of the Euler equations (2) in [16] employs
arguments essentially local in nature. They apply to every
local point of the extremal x(t). Sometimes one treats the
nonlocal functional

Inl(a, b) = 1

L(a, b)

b∫

a

E(x(t))l(x′(t))dt. (9)

The Euler equations for the extremals of Inl become some-
how more complicated, cf. [46]. We use with Eq. (3) the
L(x′) = L(a, b) for a subsidiary condition in an isoperimet-
ric problem, and we form a Lagrange ansatz [16] with the
functionals of nominator and denominator of (9), where the
denominator is the arc-length (3)

E(x(t))l(x′(t)) + λ l(x′(t)) = (E(x) + λ) l(x′). (10)

λ is the Lagrange multiplier. The first variation has to be

0 = g l − d

dt

(
(E(x) + λ)

x′

l

)
(11)

= g l − (gTx′) x′

l
− (E + λ)

d

dt

(
x′

l

)
,

where g is the gradient of E .

2.4 Sufficient conditions for a minimal extremal

An important kind of points in the variational theory is the
following definition [16]:

If a curve is an extremal of Eq. (1), starting at any point A,
and a second “neighboring” extremal of Eq. (1), also starting
at A, intersects the first curve in a next point, say point B,
then the intersection point is called conjugate point (CP).

Example 2 On a sphere the meridians through the poles are
the great circles with the shortest arclength (in one hemi-
sphere) but the poles are CPs because the extremals intersect
there.

Besides the condition of the Euler equations, there are two
further conditions for a minimum:

1. One of the sufficient conditions of a curve x(t) to be an
extremal is the Jacobi condition that the curve has not
to contain CPs.

2. The second sufficient condition is the positive definite-
ness of the second variation, of the matrix Fx ′x ′ .

3 Variational analysis of RPs

The adiabatic PES of the molecular system of observation
is the basis of our treatment. Using the Born–Oppenheimer
approximation, the PES is the sum of the Coulomb repulsion
of the atomic kernels and the Schrödinger equation of the
electrons,H Ψ = EΨ . The explicit calculation of the energy
E is not of interest here. We assume that the PES is given by
a scalar function of the coordinates of the molecule at every
point of interest.

Let K be a subset of Rn . K is the configuration space
of the PES. Let x = (x1, . . . , xn)T ∈ K . The function
E(x): K → R is an n−dimensional potential energy surface
(PES). The set Ec = {x ∈ K , E(x) = c} is named equipo-
tential hypersurface. The configuration space of a molecule
is restricted. We assume at least a twofold differentiability of
the PES for practical reasons. The vector of first derivatives
g : K → Rn with

g(x) =
(

∂ E

∂x1
(x), . . . ,

∂ E

∂xn
(x)

)T

(12)

is the gradient.
The next definition is the functional σ(x), the norm of the

gradient

σ(g(x)) =
√

gT(x) g(x) =
√√√√ n∑

k=1

g2
k (x). (13)

σ 2 is the scalar product of the gradient with itself.
The second derivatives of E form the Hessian matrix

H(x) ∈ Rn×n

H(x) =
(

∂2 E

∂xi∂x j
(x)

)n

i, j=1
. (14)

The Hessian is symmetric.
The adjoint matrix A of the Hessian matrix H is defined

as ((−1)i+ j mi j )
T where mi j is the minor of H obtained by
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deletion of the i th row and the j th column from H, and taking
the determinant.

The adjoint matrix satisfies the relation

H A = det(H) In, (15)

det(H) is the determinant of H, and In is the unit matrix.

3.1 Steepest descent: IRC

A pathway of wide interest is the IRC [42,43], cf. also [7].
The steepest descent from the SP in (usually mass-

weighted) Cartesian coordinates [47] is a simple definition of
a reaction path, which is well known as the intrinsic reaction
coordinate (IRC), but its definition may go back to Euler.
Using t for the curve parameter, a general steepest descent
curve x(t) is defined by the system of vector equations in n
dimensions

x′(t) = − g(x(t)). (16)

The SD system is a system of autonomous differential equa-
tions of the first order allowing an integration constant. Thus,
its solution can start at an arbitrary initial point (where the
gradient is not zero). The path (16) is given by the nega-
tive gradient of the PES for the tangent vector of the curve.
But the potential force is the zero vector at stationary points.
With the exception of the stationary points the solution of the
differential equation of the IRC is unique.

Taking the IRC as a model, in some cases, we may under-
stand the definition of the RP by a system of “simple”,
autonomous differential equations

x′(t) = f(x(t)), (17)

for example, even if f(x(t)) = −g(x(t)), it is the SD. If
the Jacobian matrix of f(x) is symmetric, then there is a
simple possibility to transform such an RP definition from a
differential equation into the variational form of Eq. (1). If
x(t) is an RP with definition (17), and l(x′(t)) is given by
(4), then its variational formulation works with

F(x, x′) =
√

fT(x(t)) f(x(t)) l(x′(t)), (18)

because this F immediately fulfills the Euler equations.
It is

Fxi = 1√
fT f

∑
k

fk
∂ fk

∂xi
l =

∑
k

fk
∂ fk

∂xi
, (19)

because here is l = √
fT f using (4) and (17), and

− d

dt
Fx ′

i
= − d

dt

(√
fT f

x ′
i√

x′T x′

)
. (20)

If one uses Eq. (17) then the two roots again cancel each
other out. We obtain

− d

dt
( fi ) = −

∑
k

∂ fi

∂xk
x ′

k = −
∑

k

∂ fi

∂xk
fk . (21)

If the derivation is symmetric:
∂ fi

∂xk
= ∂ fk

∂xi
, the Euler con-

dition is fulfilled. With f(x(t)) = −g(x(t)) the symmetry
holds. One has the variational formula for the steepest descent
[11–15,17,18]

ISD =
b∫

a

√
gT(x(t)) g(x(t))

√
x′T x′dt. (22)

The extremal of ISD = min!, for A = min and B = T S, is
the IRC. For integrants like Eq. (18), the matrix Fx ′

i x ′
i

has
a zero determinant. The matrix is not positive definite. The
second sufficient condition of Sect. 2.4 for a minimum is not
fulfilled. However, because the integrant of the task (22) has
a positive first part, the extremal is a minimal curve [48].

3.2 Newton trajectory (NT) or reduced gradient [49]

A quarter of a century ago it was proposed to chose a driving
coordinate along the valley of the minimum, to go a step in
this direction, and to perform an energy optimization of the
residual coordinates [20]. A combination of the distinguished
coordinate method starting at the SP and steepest descent was
also used [50]. Recently, the method was transformed into a
new mathematical form [8]. The chemically most important
features of the PES are the reactant and the product minimum
and the SP lain in between. These stationary points of the
PES are characterized by the condition g(x) = 0. It is valid
at extremizers of the PES, but single components of the gra-
dient can also vanish in other regions of the PES. Using this
property, a curve of points x can be followed which fulfills
the n − 1 equations

gi = 0, i = 1, . . . , k − 1, k + 1, . . . , n (23)

omitting the kth equation [8,19]. This produces the (n − 1)-
dimensional zero vector of the reduced gradient; the method
was subsequently called reduced gradient following. Equa-
tion (23) means that the gradient points into the direction of
the pure xk coordinate. The concept may be generalized by
the challenge that any selected gradient direction is fixed

g(x)/|g(x)| = r, (24)

where r is the selected unit vector of the search direction; and
the corresponding curve is named Newton trajectory. The
search direction may correspond to the start direction of a
chemical reaction. The “reduction” of Eq. (24) is realized by
a projection of the gradient onto the (n−1)-dimensional sub-
space which is orthogonal to the one-dimensional subspace
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spanned by the search direction r. A curve belongs to the
search direction r, if the gradient of the PES always remains
parallel to the direction of r at every point along the curve
x(t)

Pr g(x(t)) = 0 (25)

where Pr projects with the search direction r. This means that
Pr r = 0. Employing such a projector, instead of Eq. (24),
one refrains from the use of the very uncomfortable differen-
tiation of the absolute value in the denominator. A possibility
to define Pr is [9,51]

Pr = In − r rT, (26)

where In is the unit matrix. This Pr is an n ×n matrix of rank
n − 1, because r is a column vector, rT is a row vector, and
their dyadic product is a matrix of rank 1.

NTs have also a definition by a differential equation. The
adjoint matrix A has to be used [52–56] to define an auto-
nomous system of differential equations, similar to Eq. (17),
for an NT curve x(t), where t is again the curve parameter

x′(t) = ± A(x(t)) g(x(t)), (27)

see also [57,58]. With the symmetric Hessian, the adjoint
matrix A is also symmetric. However, the Jacobian matrix of
(27) is non-symmetric, in the general case. If the additional
symmetry holds:

∂ Aik

∂xl
= ∂ Alk

∂xi
(28)

we have, with one line of system (27)

x ′
i = ±

∑
k

Aik gk := fi (29)

the derivation of fi

∂ fi

∂xl
= ±

∑
k

(
∂ Aik

∂xl
gk + Aik

∂gk

∂xl

)

= ±
∑

k

(
∂ Alk

∂xi
gk + Aik Hkl

)

= ±
∑

k

(
∂ Alk

∂xi
gk + Alk Hki

)
= ∂ fl

∂xi
. (30)

The last line holds because of Eq. (15), we have for i �= l
that

∑
k Aik Hkl = 0 = ∑

k Alk Hki . Thus, an NT with defin-
ition (27) and symmetry (28) fulfills the necessary extremal
condition of the variational integral

INT =
b∫

a

√
(Ag)T (Ag) l(t) dt

=
b∫

a

√
gT A2 g

√
x′T x′dt. (31)

A special case where the condition (28) holds is the PES in
an exact quadratic form, see [33],

E(x) = E0 + (x − x0)
T H (x − x0)/2.

x0 is the critical point, H is a constant matrix and the gradient
is H (x − x0). Then the mixed derivatives (28) are all zero.
In the general case, where the symmetry relation (28) is not
fulfilled, the ansatz (31) is unlikely for an NT calculation.
One may use a different variational functional by the general
ansatz (see [15] for SD)

F(x, x′) = (
x′ ∓ A(x) g(x)

)T (
x′ ∓ A(x) g(x)

)
. (32)

Of course, it is the differential equation (27) put into a vari-
ational functional. If the minimum of a variational integral
with this integrant exists, it should be zero.

3.3 Variationally optimized reaction path

It is remarked (not fully correctly) that the RP of an SD,
Eq. (16), fulfills the extremal task

IR P =
b∫

a

E(x(t)) l(x′(t))dt = min! (33)

where a and b are the parameters of reactant and product of
a reaction, respectively [59]. We will see that the extremals
of this variational integral are not exactly SD pathways. It is
F(x, x′) = E(x) l(x′). With the parts

Fxi = gi l, i = 1, . . . , n (34)

and

− d

dt
Fx ′

i
= − d

dt

(
E

x ′
i√

x′Tx′

)

= −
∑

k

Exk x ′
k x ′

i

l
+ E

∑
k(x ′′

i x ′
k x ′

k − x ′
i x ′

k x ′′
k )

l3

= −1

l
(gT x′) x ′

i − E

l3 (x ′′
i l2 − x ′

i (x
′′Tx′)), (35)

the vectorial Euler equations are the following expression

0 = g l − 1

l
(gTx′) x′ − E

l3 (x′′ l2 − x′(x′′Tx′) ). (36)

It is a complicate system of differential equations of second
order for the RP which is not fulfilled by the steepest descent
(in the usual curvilinear case), because with x′ = ∓g, and
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gTg = l2, only the first two terms cancel each other out, and
we get with x′′ = ∓Hx′ = H g

0 ?= E

l3 (Hg l2 − g(gT H g) ). (37)

gTHg/ l2 is a scalar, the Rayleigh-quotient [60], and usually
the vectors H g and g point into different directions, thus the
Euler equations are not fulfilled for an SD curve. Only if g
is an eigenvector of the Hessian matrix itself, the last two
terms also nullify as well. In the case, the steepest descent
additionally has to be a gradient extremal, see below, and this
is the case if the SD is a straight line only [33]. The second
derivatives x′′ in Eq. (36) describe the curvature of the RP. If
x(t) is SD and GE, they are zero. Thus, the ansatz (33) is an
interesting proposal for an MEP, but it does not produce the
IRC of Fukui (if A = minimum, and B = TS) [46].

Pratt [27] and Elber and Karplus [20,24,26] proposed to
solve the nonlocal extremal integral along a set of curve
points x(t) again seen as the reaction path approximation:

IORP = 1

L(a, b)

b∫

a

E(x(t)) l(x′(t))dt (38)

like Eq. (9), where a and b may again be the parameters
of reactant and product of a reaction, respectively. The path
length L additionally emerges in the denominator. It was
assumed that the solution is an MEP, a reasonable approx-
imation of the IRC. The derivation of the first variation is
similar to the above mentioned. Additionally, we have to use
the Lagrange multiplier λ. We get the Euler equations (11) for
a non-local variational task [46]. The difference to Eq. (36)
is only the factor: for E we have (E + λ). If one tests the
SD path, then again the first two summands nullify, but the
third term is only zero for linear pathways, like above. Thus,
in the general case, the task (38) will not be solved by SD
curves. If the SD, coming from a strong side slope, reaches
the valley floor with a “sharp” curvature then the correspond-
ing Elber–Karplus path cuts the corner [61]. Note that in the
former reference, the functional IRP, Eq. (33), is replaced by
[62]

IHS =
b∫

a

Exp(βE(x(t))) l(x′(t))dt. (39)

However, arguments concerning Eq. (37) still hold further.
Here, β = 1/kBT with kB is the Boltzmann constant, and T
is the temperature. The variational task (39) sends the temper-
ature in a factor of the curvature term of the Euler equations.
The corresponding pathways become dependent from T , if
there is a curvature, although, they be further quasi “static”
RPs.

The ansatz (38) is an interesting proposal for an
MEP under a simple numerical approximation by discrete

differences, see also [63]. Applications are given in [61,64],
and in references therein. The extremal task (38) has triggered
a long row of interesting works to MEPs and TS searches
called nudged elastic band method, cf. [65–67] and refer-
ences therein.

3.4 Gradient extremal (GE)

Pancíř [68] and Basilevsky/Shamov [28,29] formulated local
criteria for describing a valley floor line. Pancíř determined
two conditions which he assumed to be obviously given:

1. The energy must increase along all directions perpen-
dicularly to the direction of the valley floor line.

2. The curvature of the energy surface along the direction
of the valley must be less than the curvature along any
other direction.

Pancíř came to the conclusion that a path satisfying (1)
and (2) should be a sequence of points where the gradient, g,
is an eigenvector of the Hessian, H.

If the norm of the gradient forms a minimum along points
of an equi-hypersurface, Ec(x), i.e. along all directions per-
pendicular to the gradient [28–32,69,70], a point of gentlest
ascent of a valley is found. The measure for the ascent of the
function E(x) is the norm of the gradient vector, the func-
tional σ 2. The implicit condition E(x) = c may be fulfilled
by the sub-hypersurface x(u, c), where u may be an (n − 1)-
dimensional parameter. One treats the parametric optimiza-
tion problem with the objective function

σ(x)2 → Min
x(·,c) ! (40)

where the nonlinear constraint is E(x) = c. Thus, objective
function and constraint are developed from the function E
itself. We are interested in following a path of local mini-
mums as the parameter increases (if we do an ascent to the
surface) or decreases (if we go downhill). For almost all val-
ues of c one generally might expect that a local minimum
x(c) of problem (40) depends differentially on c. Using the
normalized gradient

w(u, c) := g(x(u, c))/|g(x(u, c))| (41)

and

Pw(u,c) := In − w(u, c) w(u, c)T, (42)

the requirement for an extremal value of σ is expressed by

Pw(u,c)∇ (σ 2(x(u, c))) = 0, (43)

where c is constant. Because of ∇ (σ (x)2) = 2H(x) g(x),
and setting λ = wT H w, it results in the basic eigenvector
relation

H(x) g(x) = λ(x)g(x). (44)
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The proportional factor λ(x) is an eigenvalue of the Hessian
matrix, and the gradient is its eigenvector. The GE equa-
tion (44) selects points of the configuration space having an
extreme value of σ (x) with respect to variations on equi-
hypersurfaces. So, if σ (x) has a minimum the PES may have
a valley-floor GE. (Note: the extrema of σ (x) can also be
maxima or degenerate stationary points [4,32,33].) The
development gives rise to the formulation of the streambed
description of the valley ground GE, which follows the small-
est eigenvalue: If we are on this gradient extremal, then from
the left as well as from the right hand side the SD lines con-
fluent to this valley line [33]. The GE forms an isolated curve
in the configuration space. It does not form a family of curves
as the SD lines do. But if the lines of two different families
of SD curves confluent into the GE, from the right as well as
from the left, it may serve as a model of the valley floor.

Curves x(c) defined by Eq. (44) consisting of such points
on consecutive equi-hypersurfaces for different sections of
increasing or decreasing c are termed gradient extremals
[30]. This kind of curves do not build a field of curves spread-
ing over the PES, however, they are “single” solutions.

Although a GE can be seen to be a curve with an induced
tangent by the derivation of Pg H g = 0, see [71], where
Pg is the projector in direction of g, as well as NTs which
allow an analogous definition, for GEs we do not know a
definition like Eq. (17). And because GEs are not a field of
curves, an integral extremal condition with boundaries a and
b should not be possible, indeed. So, it seems that this RP
curve which is named an extremal, even the GE, does not
have a variational extremal definition.

4 Conjugate points of extremals

4.1 IRC

To see the deeper meaning of the CPs, we treat the catchment
region of a minimum of the PES [3]. Catchment regions gen-
erate a partition of the n-dimensional configuration space K .
Using the concept of SD curves, a catchment region KA of
the PES in K is defined as the collection of all those nuclear
configurations B from where an infinitely slow, vibrationless
relaxation path, as expressed by the SD, leads to a given crit-
ical point A. The index A is connected with the index of the
critical point (the number of negative eigenvalues of the local
Hessian matrix of the PES) at A. The concept of catchment
regions is closely related to ridges of the PES. Usually, an
(n − 1)-dimensional ridge system separates the catchment
regions of two adjacent minimums, and every ridge ends
below at an SP, cf. the 3D example of HCN in [72], and [73].
An SP of index one is the TS which connects the two adjacent
minimums by the IRC.

The catchment regions have their origins in the inspired
works of Cayley and Maxwell, cf. [74], who used some of
the mathematical properties of catchment regions for the
description of geographical terrains, expressing the relations
between hills, valleys, dales, and watersheds. However note
that here in chemical applications, the dividing surface
between two catchment regions is an (n − 1)-dimensional
hypersurface.

A basic point in the theory of variational extremals [11] is
the possibility of embedding the extremal curve under con-
sideration in a family of neighboring curves which is fit to
a field of directions. If the endpoint B of the extremal curve
is in the catchment region of start point A, then the origi-
nal extremal can be embedded in a field. A field of curves
is defined by the set of extremal curves cutting the hyper-
surfaces Ec transversally [11]. But still more explicitely, the
cutting of SD curves to Ec is orthogonal.

The set of extremal curves emerging from a central point A
will constitute a field up to its conjugate points to the central
point. In the present problem of SD curves flowing together
into the point A, which is a minimum, other SD curves may
intersect this SD for the first time at the stationary points
of the PES of a character saddle point, or maximum. These
types of stationary points are the possible CPs with respect
to central point A because there the gradient becomes zero
again. Other points are not possible, because in other points
the vector equations (16) for SD curves are unique. Thus,
a CP can be a stationary point of a character saddle point
of any index, or maximum on the PES. However, for saddle
points with one negative eigenvalue, saddle points of index
one, only one SD curve emerging form the central point A
arrives at this type of stationary points. As a consequence,
the first-order saddle points are not conjugate points with
respect to the central point. This result is proved from a rig-
orous mathematical point of view in [11], using the Jacobi
equation associated with the variational problem under con-
sideration.

For the IRC no CP can exist. We illustrate it by the simple,
schematic Fig. 1. Different SD curves can only cross or con-
fluent at saddle points. At maximums, as well as minimums,
the field of SD curves starts, or confluents, at all [33,75].
For a saddle of index 1 there is the IRC trough the SP, and
the (n − 1) corresponding ridge lines along the orthogonal
directions do cross the curve. However, those ridge lines can
never start at the minimum. All neighboring curves do cir-
cumvent the SP in a hyperbolic kind. This is the reason that
a variational minimization of the IRC path works, if we fix
the two startpoints to two minimums. From another point of
view, seeing the SD curves from the two minimums, there are
infinitely many SD curves which confluent there. However,
only the IRC comes from the SP, and it is the single curve
which connects the two minimums. So to say, the IRC is a
singular SD curve.
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Fig. 1 Pedagogical example of a gradient field around an SP at zero,
and some SD curves

In Fig. 1 we show the schematic situation at SPs of index
one in a two-dimensional example. The surface y2 − x2 is
used. The zero is the SP, and the x-axis may be the IRC. At
the SP a second SD crosses; however, it comes from above.

If an IRC is a “broken” extremal, like an IRC between
two SPs of index one and a minimum, where the IRC runs
down first between the two adjacent SPs, and then turns to the
final minimum, the discussed relations are in order, see [13].
The case concerns ramified reaction valleys. Of course, an
IRC connection between two SPs is only possible in special,
symmetric cases of the PES [72].

SPs of an index higher than 1, on the other side, are CPs of
an adjacent minimum. It starts with SPs of index 2, cf. [76,
77], which often are of chemical interest, too. Consequently,
an SD between an SP of index two and a minimum is not
unique.

4.2 NTs

For NTs Eq. (27) is also unique, in nonstationary points,
if additionally Det(A) of the adjoint matrix is not zero. But if
Det(A) = 0, we have a bifurcation point (BP) of an NT. The
NT divides different families of NTs which connect differ-
ent stationary points [57]. However, for NTs the structure of
the CP relation is quite more complicate than for SD curves.
The reason is that adjacent stationary points like minimum
and TS are conjugate points of NTs. Any NT without a BP
connects stationary points with an index difference of one.
Figure 2 shows a family of NTs between minimum and SP.

0 0.2 0.4 0.6 0.8 1

0.5

0

0.5

1

1.5

Fig. 2 Five NTs (dashed curves) of the family of NTs between mini-
mum at (1, 0) and SP at (0, 0). Vector field A g. Level lines (thin) Ec

The surface x2(x2−2)+y2 with a double minimum at (±1,0)
is used, being the ideal case: it is found to occur in many sys-
tems. Additionally, the field of directions of the NT, Eq. (27),
of A g is shown. It is to observe that the minimum is a repul-
sive stationary point, but the SP of index one is an attractive
stationary point. The NTs fit the directions of A g. Figure 2
shows that a minimization of a variational functional with
integrant Eq. (32) between a minimum A = (1, 0) and a TS
B = (0, 0) is not useful, because the solution is not unique.
Of course, that NT with the shortest pathlength, L(a, b), can
be used for an MEP [78]. It is here the line between 0 and 1
on the x-axis, the IRC.

Only points B in the “NT-catchment region” of A being no
stationary points are possible to uniquely calculate (at least
theoretically) by the ansatz (32).

In contrast to the determination of stationary points, NTs
open the possibility for a new method to calculate all kinds
of valley-ridge inflection (VRI) points. (The symmetric case
is already discussed [9,10,72].) The pattern of NTs around a
VRI is the same like the pattern of SD curves around an SP,
see Fig. 1 above, and Figs. 2–4 in [72]. The analogy is like the
IRC is spanned over the SP of index one which is not a CP
because the IRC is the single curve which is going through
the SP, a singular NT is going through a VRI which is not
a CP either. A VRI point is the location which is crossed
by the one, single NT which connects a minimum and an
SP of index two, or which connects two SPs of index one.
The branch of the single NT separates families of hyperbolic
NTs which connect different stationary points. So to say, the
branch of a single NT is the border of catchment regions
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of different TSs. The corresponding regions of the PES are
also named “reaction channels” to TSs [57]. A method to
calculate the VRI-NT by a variational ansatz will be reported
in a forthcoming paper.

5 Transformation of the parameter

In the extremal task of Eq. (1), we will change the used para-
meter, t . We have a first possibility with L(a, t) in Eq. (3)
with a ≤ t ≤ b

L(a, t) = s(t) =
t∫

a

√
x′(τ )Tx′(τ ) dτ =

L∫

0

ds. (45)

s(t) is a new parameter instead of t, and the pathway now
will be x(s). The boundary for t = a is s = 0, and for t = b
it is even s = L(a, b). Note that L(a, b) �= 1, in the general
case. The tangent to the curve x(s(t)) is

dx
dt

= dx
ds

ds

dt
,

thus with the derivation of Eq. (45)

x· = dx(s)

ds
= dx(t)

dt

/ ∣∣∣∣dx(t)

dt

∣∣∣∣ . (46)

It has unit length. The · is the derivation to path length s. In
Eq. (16) we get the path length, s, for the parameterization,
if we normalize the gradient by its length to unit vector

dx(s)

ds
= − g(x(s))

|g(x(s))| . (47)

It is the well-known equation for the SD with IRC-parameter,
s. Using the right hand side for the vector function f(s) in
ansatz (18), we may obtain the variational integral

ISDs =
L∫

0

√
gT(x(s)) g(x(s))√|g|2

√
x·T(s) x·(s) ds. (48)

The two square roots with the gradients cancel each other out
in the integral, and the tangent vectors have unit length, see
above, so it remains the task

∫ L
0 ds = min!, which is useless

because nothing is to variate.
Another transformation of the curve parameter may also

be interesting [11,13]. We start with a new variational integral
and look for the Euler equations.

β∫

α

(gT(x(τ )) g(x(τ ))) (x· T(τ ) x·(τ ))dτ (49)

where “·” is the differentiation to the parameter τ . The Euler
equations are

(H g) (x· Tx·) − d

dτ
(gT g x·) = 0. (50)

If one put

x· = −g
gTg

(51)

and if one uses

d

dτ
g = H x· = −H g/(gT g) (52)

then the Euler equations are fulfilled. Of course, the differ-
ential equations (51) describe a field of SD curves. The new
normalization leads to a special parameterization. We treat
an SD curve x(τ ) starting at TS in the direction of the moun-
tain pass. We know that it is orthogonal to the hypersurfaces
Ec. We study a region around E(x(τ )) = c. If τ goes on, we
get a function c(τ ). We can do the derivation

dc

dτ
= ET

x
dx
dτ

= gT x·. (53)

If we insert Eq. (51) we get dc/dτ = −1. The parameter c
is the value of the PES itself, it is the inverted τ . The para-
meterization of the SD curves in differential equations (51)
goes on with the energy as the curve parameter. Of course, it
only works in monotone regions of E . This is also obtained
directly: in regions where g �= 0 and x· �= 0 one can define
the inverse derivation

dτ

dc
= 1

gT x· . (54)

If we use now c for the new parameter, c = −τ , we obtain

dx
dc

= dx
dτ

dτ

dc
= x·

gT x· = g
gT g

> 0 (55)

where · is still the derivation to τ . The parameterization of bf
x by c of the SD curves goes on with an analogous direction
as E itself, because it is E .

In general, starting with a variational ansatz by integrant
(18) in the functional (1), we can do any regular parameter
transformation, t = t (θ). We put x(t (θ)) = x̃(θ) and use the
dot for derivation to θ . With t ·(θ) > 0 we get

x̃· = dx̃(θ)

dθ
= dx(t (θ))

dt

dt

dθ
= x′ t ·. (56)

Because l(x′(t)) is homogenous with degree one, we get the
variational integral

β∫

α

√
fT(x̃(θ)) f(x̃(θ))

√
x̃· T(θ)

t ·
x̃·(θ)

t ·
t · dθ (57)

The transformation cancels each other out in the integral. The
integral is of the same kind as the starting form. However,
in the corresponding differential equation, the transforma-
tion will have an effect, at least by a different normalization.
The conclusion is: the variational integral to a given curve
definition by a differential equation is not unique. The pos-
sibility to transform the parameter in the variational integral
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opens a very practical way. The parameters in Eqs.(16) and
(51) are not truly comfortable: In Eq. (16) the range for t
is (−∞, ∞) for the SD between TS and minimum, but in
Eq. (51) the length of the tangent vector diverges to infin-
ity for the approximation of a stationary point. The trans-
formation to pathlength parameter s opens the possibility
to use equidistant, or nearly equidistant, steps for a discrete
approximation of the integral, because integral (57) becomes
the trivial form

L∫

0

√
fT(x̃(s)) f(x̃(s)) ds. (58)

In Eq. (16) any change in the scaling of the right-hand
side does not change the direction of the tangent along the
path, the left-hand side. The scaling only changes the curve
parameter but not the curve points x itself in K . So to say,
the curve parameter, t , comes out to be only a “dummy”
integration parameter [17].

6 Conclusions

We review the findings of [11–15,17,18] at a general math-
ematical level that the IRC can be defined by a variational
integral. The IRC is frequently used as a synonym for the
MEP. The result is that the IRC is a unique extremal. But we
obtain that a corresponding definition of the integral is not
unique. Besides the IRC, there are other “static” RP models.
We use here the term minimum energy path (MEP) for the
whole category of these pathways. The ansatz (18) for a gen-
eral variational integral is also applicable for other RP defini-
tions like NTs in special cases. However, using NTs for an RP,
the adjacent stationary points for an RP, minimum and TS,
are conjugate points. That disturbs one of the sufficient con-
ditions for a unique minimal extremal, the Jacobi condition.

Other extremal definitions, like the one for the variation-
ally optimized RP, result also in an MEP. They are proven
not to be solved by steepest descent curves, because the nec-
essary Euler equations are not fulfilled. Thus, they have to
give different MEP solutions than the IRC. The possibility
to do a parameter transformation in the variational integrant
(18) has opened the definition for a wide use by approximate
formulas.

Not discussed here are the differences of a path which min-
imizes a certain integral, and the (possibly other) RP which
maximizes the rate of transitions at the SP, between reac-
tant and product, see [15,61,62,79–81]. So, with IRC, NTs,
ORPs in their different kinds, GEs or still other pathways,
we find unsolved the ultimate question [49,71]:

“What is the ‘true’ MEP?”

Because the careful identification of a “good” reaction coor-
dinate is crucial for the calculation of reaction rates.
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